
Lecture 7

More on Constitute Relations,
Uniform Plane Wave

As mentioned before, constitutive relations are important for us to solve only the first two
of four Maxwell’s equations. Assuming that J is known or zero, then the first two vector
equations have four vector unknowns: E, H, D, and B, which cannot be determined by
solving only two equations. The addition two equations come from te constitutive relations.
Constitutive relations are useful because they allow us to incorporate material properties into
the solutions of Maxwell’s equations. The material properties can be frequency dispersive,
anisotropic, bi-anisotropic, inhomogeneous, lossy, conductive, nonlinear as well as spatially
dispersive. The use of phasors or frequency domain method will further simplify the charac-
terization of different media. Hence, we will also study uniform plane wave in such media,
including lossy conductive media.

7.1 More on Constitutive Relations

As have been said, Maxwell’s equations are not solvable until the constitutive relations are
included. Here, we will look into depth more into various kinds of constitutive relations. Now
that we have learned phasor technique which is a powerful tool for frequency domain analysis,
we can study a more general constitutive relationship compared to what we have seen earlier.

7.1.1 Isotropic Frequency Dispersive Media

First let us look at the simple linear constitutive relation previously discussed for dielectric
media where [32], [33][p. 82], [47]

D = ε0E + P (7.1.1)

We have a simple model where

P = ε0χ0E (7.1.2)

69



70 Electromagnetic Field Theory

where χ0 is the electric susceptibility. When used in the generalized Ampere’s law, P, the
polarization density, plays an important role for the flow of the displacement current through
space. The polarization density is due to the presence of polar atoms or molecules that behave
like little dipoles in the presence of an electric field. For instance, water, which is H2O, is a
polar molecule that becomes a small dipole when an electric field is applied.

We can think of displacement current flow as capacitive coupling between the dipoles
yielding polarization current that flows through space. Namely, for a source-free medium,

∇×H =
∂D

∂t
= ε0

∂E

∂t
+
∂P

∂t
(7.1.3)

Figure 7.1: As a series of dipoles line up end to end, one can see a current flowing through
the line of dipoles as they oscillate back and forth in their polarity. This is similar to
how displacement current flows through a series of capacitors.

For example, for a sinusoidal oscillating field, the dipoles will flip back and forth giving rise
to flow of displacement current just as how time-harmonic electric current can flow through
a capacitor as shown in Figure 7.1.

The linear relationship above can be generalized to that of a linear time-invariant system
[53], or that at any given space point r [36][p. 212], [47][p. 330].

P(r, t) = ε0χe(r, t)~E(r, t) (7.1.4)

where ~ here implies a convolution. In the frequency domain or the Fourier space, the above
linear relationship becomes

P(r, ω) = ε0χ0(r, ω)E(r, ω), (7.1.5)

or

D(r, ω) = ε0 [1 + χ0(r, ω)] E(r, ω) = ε(r, ω)E(r, ω) (7.1.6)

where ε(r, ω) = ε0 [1 + χ0(r, ω)] at any point r in space. There is a rich variety of ways
at which χ0(ω) can manifest itself. Such a permittivity ε(r, ω) is often called the effective
permittivity. Such media where the effective permittivity is a function of frequency are termed
dispersive media, or frequency dispersive media.

The above concept of simple relation between flux and field can be adapted for magnetic
flux and field. By a quirk of history, the magnetic flux density B is related to the magnetic
field H and magnetization M as

B = µ0(H + M) (7.1.7)



More on Constitute Relations, Uniform Plane Wave 71

Defining a magnetic susceptibility χm such that M = χmH, one gets the relationship that

B = µ0(1 + χm)H (7.1.8)

which is analogous to the relationship between electric flux D and electric field E.

7.1.2 Anisotropic Media

For anisotropic media [33][p. 83]

D = ε0E + ε0χ0(ω) ·E
= ε0

[
I + χ0(ω)

]
·E = ε(ω) ·E (7.1.9)

In the above, ε is a 3×3 matrix also known as a tensor in electromagnetics. The above implies
that D and E do not necessary point in the same direction: the meaning of anisotropy. (A
tensor is a special kind of matrix that is often associated with a physical notion like the
relation between two physical fields, whereas a matrix is not.)

Previously, we have assumed that χ0 to be frequency independent. This is not usually the
case as all materials have χ0’s that are frequency dependent. (This will become clear later.)
Also, since ε(ω) is frequency dependent, we should view it as a transfer function where the
input is E, and the output D. This implies that in the time-domain, the above relation
becomes a time-convolution relation as in (7.1.4).

Similarly for conductive media,

J = σE, (7.1.10)

This can be used in Maxwell’s equations in the frequency domain to yield the definition of
complex permittivity. Using the above in Ampere’s law in the frequency domain, we have

∇×H(r) = jωεE(r) + σE(r) = jωε˜(ω)E(r) (7.1.11)

where the complex permittivity ε˜(ω) = ε− jσ/ω. Notice that Ampere’s law in the frequency
domain with complex permittivity in (7.1.11) is no more complicated than Ampere’s law for
nonconductive media. The algebra for complex numbers is no more difficult than the algebra
for real numbers.1 This is one of the strengths of phasor technique.

For anisotropic conductive media, one has

J(ω) = σ(ω) ·E(ω), (7.1.12)

Here, again, due to the tensorial nature of the conductivity σ, the electric current J and
electric field E do not necessary point in the same direction.

The above assumes a local or point-wise relationship between the input and the output
of a linear system. This need not be so. In fact, the most general linear relationship between
P(r, t) and E(r, t) is

P(r, t) =

� ∞
−∞

� ∞

−∞
χ(r− r′, t− t′) ·E(r′, t′)dr′dt′ (7.1.13)

1Computer scientists call two systems having the same algebraic structure homomorphic. We will use the
term homomorphism to denote such, even though its precise mathematical meaning is quite abstract.



72 Electromagnetic Field Theory

The above is a general convolutional relationship in both space and time. In the Fourier
transform space, by taking Fourier transform in both space and time, the above becomes

P(k, ω) = χ(k, ω) ·E(k, ω) (7.1.14)

where

χ(k, ω) =

� ∞
−∞

χ(r, t) exp(jk · r− jωt)drdt (7.1.15)

(The dr integral above is actually a three-fold integral with dr = dxdydz.) Such a medium is
termed spatially dispersive as well as frequency dispersive [36][p. 6], [56]. In general2

ε(k, ω) = 1 + χ(k, ω) (7.1.16)

where

D(k, ω) = ε(k, ω) ·E(k, ω) (7.1.17)

The above can be extended to magnetic field and magnetic flux yielding

B(k, ω) = µ(k, ω) ·H(k, ω) (7.1.18)

for a general spatial and frequency dispersive magnetic material. In optics, most materials
are non-magnetic, and hence, µ = µ0, whereas it is quite easy to make anisotropic magnetic
materials in radio and microwave frequencies, such as ferrites.

7.1.3 Bi-anisotropic Media

In the previous section, the electric flux D depends on the electric field E and the magnetic
flux B, on the magnetic field H. The concept of constitutive relations can be extended to
where D and B depend on both E and H. In general, one can write

D = ε(ω) ·E + ξ(ω) ·H (7.1.19)

B = ζ(ω) ·E + µ(ω) ·H (7.1.20)

A medium where the electric flux or the magnetic flux is dependent on both E and H is
known as a bi-anisotropic medium [33][p. 81].

7.1.4 Inhomogeneous Media

If any of the ε, ξ, ζ, or µ is a function of position r, the medium is termed an inhomogeneous
medium or a heterogeneous medium. There are usually no simple solutions to problems
associated with such media [36].

2In the following, to be precise, one should replace the 1 with an identity operator, but it is generally
implied.
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7.1.5 Uniaxial and Biaxial Media

Anisotropic optical materials are often encountered in optics. Examples of them are the
biaxial and uniaxial media, and discussions of them are often found in optics books [57–59].
They are optical materials where the permittivity tensor can be written as

ε =

ε1 0 0
0 ε2 0
0 0 ε3

 (7.1.21)

When ε1 6= ε2 6= ε3, the medium is known as a biaxial medium. But when ε1 = ε2 6= ε3, then
the medium is a uniaxial medium.

In the biaxial medium case, all three components of the electric field feel different permit-
tivity constants. But in the uniaxial medium, the electric field in the xy plane feels the same
permittivity constant, but the electric field in the z direction feels a different permittivity
constant. As shall be shown later, different light polarization will propagate with different
behaviors through such a medium.

7.1.6 Nonlinear Media

In the previous cases, we have assumed that χ0 is independent of the field E. The relationships
between P and E can be written more generally as

P = ε0χ0(E) ·E (7.1.22)

where the relationship can appear in many different forms. For nonlinear media, the rela-
tionship can be nonlinear as indicated in the above. It can be easily shown that the principle
of linear superposition does not hold for the above equation, a root test of linearity. Non-
linear permittivity effect is important in optics. Here, the wavelength is short, and a small
change in the permittivity or refractive index can give rise to cumulative phase delay as
the wave has to propagate many wavelengths through a nonlinear optical medium [60–62].
Kerr optical nonlinearity, discovered in 1875, was one of the earliest nonlinear phenomena
observed [33,57,60].

For magnetic materials, nonlinearity can occur in the effective permeability of the medium.
In other words,

B = µ(H) ·H (7.1.23)

This nonlinearity is important even at low frequencies, and in electric machinery designs
[63, 64], and magnetic resonance imaging systems [65]. The large permeability in magnetic
materials is usually due to the formation of magnetic domains which can only happen at low
frequencies. The B-H relation is an electric machinery is shown in Figure 7.2. The loss of
the system is related to the area of the hysterisis loop.
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Figure 7.2: In an electric machinery, the relation between the B flux and the magnetic
H is usually nonlinear, as shown in the picture. Moreover, the nonlinear system is not
time-reversible, yielding a B-H relation as shown (courtesy of electricalacademia.com).

7.2 Wave Phenomenon in the Frequency Domain

We have seen the emergence of wave phenomenon in the time domain. Given the simplicity
of the frequency domain method, it will be interesting to ask how this phenomenon presents
itself for time-harmonic field. In the frequency domain, the source-free Maxwell’s equations
are [33][p. 429], [66][p. 107]

∇×E(r) = −jωµH(r) (7.2.1)

∇×H(r) = jωεE(r) (7.2.2)

Taking the curl of (7.2.1) and then substituting (7.2.2) into its right-hand side, one obtains

∇×∇×E(r) = −jωµ∇×H(r) = ω2µεE(r) (7.2.3)

Again, using the identity that

∇×∇×E = ∇(∇ ·E)−∇ · ∇E = ∇(∇ ·E)−∇2E (7.2.4)

and that ∇ ·E = 0 in a source-free medium, (7.2.3) becomes

(∇2 + ω2µε)E(r) = 0 (7.2.5)

This is known as the Helmholtz wave equation or just the Helmholtz equation.3

For lucidity of seeing the wave phenomenon, we let E = x̂Ex(z), a field pointing in the x
direction, but varying only in the z direction. Evidently, ∇ · E(r) = ∂Ex(z)/∂x = 0. Then
with ∂/∂x = 0 and ∂/∂y = 0, (7.2.5) simplifies to(

d2

dz2
+ k2

)
Ex(z) = 0 (7.2.6)

3For a comprehensive review of this topic, one may read the lecture notes [45].
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where k2 = ω2µε = ω2/c2 where c = 1/
√
µε is the velocity of light. The general solution to

(7.2.6) is of the form

Ex(z) = E0+e
−jkz + E0−e

jkz (7.2.7)

One can convert the above back to the time domain using phasor technique, or by using that
Ex(z, t) = <e[Ex(z, ω)ejωt], yielding

Ex(z, t) = |E0+| cos(ωt− kz + α+) + |E0−| cos(ωt+ kz + α−) (7.2.8)

where we have assumed that E0± are complex numbers such that

E0± = |E0±|ejα± (7.2.9)

The physical picture of the above expressions can be appreciated by rewriting

cos(ωt∓ kz + α±) = cos
[ω
c

(ct∓ z) + α±

]
(7.2.10)

where we have used the fact that k = ω
c . The above functions are of the form F (ct∓ x). As

mentioned before in (3.2.14) and (3.2.15), these are traveling waves. One can see that the
first term on the right-hand side of (7.2.8) is a sinusoidal plane wave traveling to the right,
while the second term is a sinusoidal plane wave traveling to the left, both with velocity c.
The above plane wave is uniform and a constant in the xy plane and propagating in the z
direction. Hence, it is also called a uniform plane wave in 1D.

Moreover, for a fixed t or at t = 0, the sinusoidal functions are proportional to cos(∓kz+
α±). This is a periodic function in z with period 2π/k which is the wavelength λ, or that

k =
2π

λ
=
ω

c
=

2πf

c
(7.2.11)

One can see that because c is a humongous number in free space electromagnetics, λ can be
very large. You can plug in the frequency of your local AM 920 station, operating at 920
KHz, to see that λ is approximately 320 m, the size of several football fields.

The above analysis still holds true even if ε and µ are dispersive, but are real numbers. In
this case, the velocity c of the wave is the velocity of its phase, or the phase velocity of the
mono-chromatic, time-harmonic, or CW wave.

7.3 Uniform Plane Waves in 3D

By repeating the previous derivation for a homogeneous, lossless, dispersive medium, the
vector Helmholtz equation for a source-free medium is given by [45]

∇×∇×E− ω2µεE = 0 (7.3.1)

By the same derivation as before for the free-space case, since ∇ · E = 0 due to source-free
medium, one has

∇2E + ω2µεE = 0 (7.3.2)
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The general solution to (7.3.2) is hence

E = E0e
−jkxx−jkyy−jkzz = E0e

−jk·r (7.3.3)

where k = x̂kx + ŷky + ẑkz, r = x̂x + ŷy + ẑz and E0 is a constant vector. And upon
substituting (7.3.3) into (7.3.2), it is seen that

k2
x + k2

y + k2
z = ω2µε = k · k (7.3.4)

This is called the dispersion relation for a plane wave. The above is also the equation for a
sphere in a 3D k space, which is also called the Ewald sphere.

In general, kx, ky, and kz can be arbitrary and even complex numbers as long as this
relation is satisfied. To simplify the discussion, we will focus on the case where kx, ky, and
kz are all real numbers. When this is the case, the vector function in (7.3.3) represents a
uniform plane wave propagating in the k direction. As can be seen, when k · r = constant, it
is represented by all points of r that represents a flat plane (see Figure 7.3). This flat plane
represents the constant phase wave front. By increasing the constant, we obtain different
planes for progressively changing phase fronts.4

Figure 7.3: A figure showing the geometrical meaning of k · r equal to a constant. It is
a flat plane that defines the wavefront of a plane wave.

Further, since ∇ ·E = 0, we have then

∇ ·E = ∇ ·E0e
−jkxx−jkyy−jkzz = ∇ ·E0e

−jk·r

= (−x̂jkx − ŷjky − ẑjkz) ·E0e
−jk·r

= −j(x̂kx + ŷky + ẑkz) ·E = 0 (7.3.5)

or that

k ·E0 = k ·E = 0 (7.3.6)

4In the exp(jωt) time convention, this phase front is decreasing, whereas in the exp(−iωt) time convention,
this phase front is increasing. The exp(jωt) time convention is often used in electrical engineering, while the
exp(−iωt) time convention is used in optics and physics.
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Thus, both E E0 are orthogonal to k for a uniform plane wave.
The above exercise shows that whenever E is a plane wave, and when the ∇ operator

operates on such a vector function, one can do the simple substitution that ∇ → −jk.
Hence, in a source-free homogenous medium,

∇×E = −jωµH (7.3.7)

the above equation simplifies to

−jk×E = −jωµH (7.3.8)

or that

H =
k×E

ωµ
(7.3.9)

Similar to (7.3.3), we can define

H = H0e
−jkxx−jkyy−jkzz = H0e

−jk·r (7.3.10)

Then using (7.3.3) in (7.3.9), it is clear that

H0 =
k×E0

ωµ
(7.3.11)

We can assume that E0 and H0 are real vectors. Then E0, H0 and k form a right-handed
orthogonal system, or that E0 ×H0 point in the direction of k. (This also implies that E,
H and k form a right-handed orthogonal system as well.) Such a wave, where the electric
field and magnetic field are transverse to the direction of propagation, is called a transverse
electromagnetic (TEM) wave. Figure 7.4 shows that k ·E = 0, and that k×E points in the
direction of H as shown in (7.3.9). Figure 7.4 also shows, as k, E, and H are orthogonal to
each other.

Figure 7.4: The E, H, and k together form a right-hand coordinate system, obeying the
right-hand rule. Namely, E×H points in the direction of k.

Since in general, E0 and H0 can be complex vectors, because they are phasors, we need to
show the more general case. From (7.3.9), one can show, using the “back-of-the-cab” formula,
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assuming k is real, that

E×H∗ = E ·E∗ k

ωµ
= |E|2 k

ωµ
(7.3.12)

(It is important to note that the magnitude square of a complex vector is |E|2 is E · E∗,
whereas that for a real vector, it is E · E. The latter definition does not guarantee positive
definiteness.) But E×H∗ is the direction of power flow, and it is in fact in the k direction.
This is also required by the Poynting’s theorem.

Furthermore, we can show in general that

|H|2 =
|k×E|2

(ωµ)2
=
ε

µ
|E|2 (7.3.13)

or that

|H| =
√
ε

µ
|E| = 1

η
|E| (7.3.14)

where the quantity

η =

√
µ

ε
(7.3.15)

is call the intrinsic impedance. For vacuum or free-space, it is about 377 Ω ≈ 120π Ω.
Notice that the above analysis holds true as long as ε and µ are real, but they can

be frequency dispersive, since we are considering a mono-chromatic or time-harmonic field.
Besides, for a mono-chromatic signal, the analysis in Section 7.2 still applies except that the
velocity of light is now given by c = 1/

√
µε. As we shall see, this velocity is the phase velocity

of the mono-chromatic wave. In the above, when kx, ky, and kz are not all real, the wave is
known as an inhomogeneous wave.5

5The term inhomogeneous plane wave is used sometimes, but it is a misnomer since there is no more a
planar wave front in this case.


